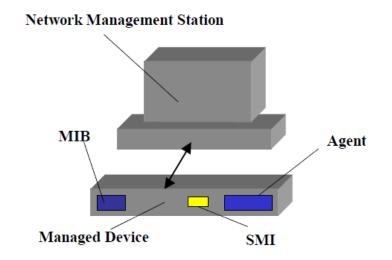


Simple Network Management Protocol


SNMP

Introduction

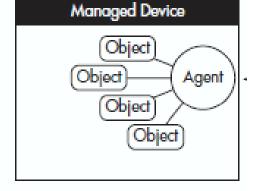
- The Simple Network Management Protocol (SNMP) Internetstandard protocol (application layer protocol)
- Used for managing devices on IP networks.
- Prior to SNMP, administrators would have to be physically attached to network devices in order to access configuration and troubleshooting data.
- Using SNMP provides standardization to reduce the complexity of network management..
- Devices that typically support SNMP include
 - routers
 - switches
 - servers
 - workstations
 - printers
 - modem racks, and more

SNMP Components

- The SNMP has three basic components:
- the Structure of Management Information (SMI),
- the Management Information Base (MIB)
- 3. and the SNMP agents

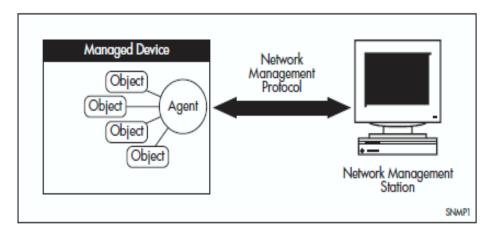
the Structure of Management Information (SMI)

- The SMI defines the data types that are allowed in the MIB.
- It sets aside a unique naming structure for each managed object.
- Typically MIB objects have six attributes.
- 1. a name
- an object identifier
- an access field (The access mode of an object: read only – read-write ..)
- 4. and a text description


Management Information Base (MIB)

- The MIB is a collection of network information.
- This information is stored in a database of managed objects that can be accessed using SNMP.
- The MIB is organized into a tree-like hierarchy
- A managed object represents a characteristic of a certain managed device.
- Ex of objects associated to a router in the network:
 - 1. Object 1 store a value of number of inbound packets to the corresponding device.
 - 2. Object2 store a value of clock ticks in the corresponding device .

SNMP Agent


- All network devices that are to be SNMP managed need to be fitted with an agent that executes all the MIB objects that are relevant.
- The agent provides the information contained in the MIB to management applications when

asked

SNMP

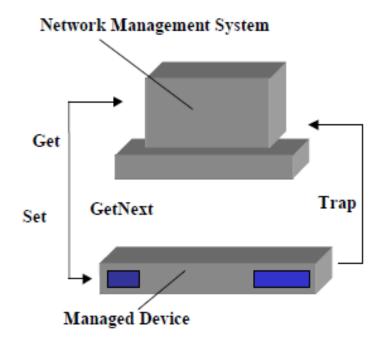
- The SNMP protocol provides a mechanism for management entities, or stations, to extract information from MIB of a managed device.
- SNMP access information in a MIB through <u>Network</u> <u>Management Station (NMS)</u> to send commands to the managed device .

Implementation

Architecture

An SNMP-managed network includes

- 1. management stations
- 2. network devices.
- The management stations execute SNMP which monitor network performance.
- Network agents are responsible for maintaining network statistics for management stations.
- When asked, each managed network device is expected to communicate such information for processing.


Implementation

- Architecture
- SMI enables a vendor to write an SMIcompatible management object.
- This object is run through a MIB compiler to create an executable code.
- The code is installed in network devices and management consoles that in turn generate network reports.

Initial network SNMPv1 Protocol Operations

- The most basic operations include: Get, GetNext,
 Set, and Trap
- Get is used by the SMI to retrieve the value of an object instance from an agent.
- GetNext is used by the SMI to retrieve the value of the next object instance from a table within an agent.
- The Set function is used to write a value to an object instance within an agent.
- Traps are used by agents to send information to the network management system.

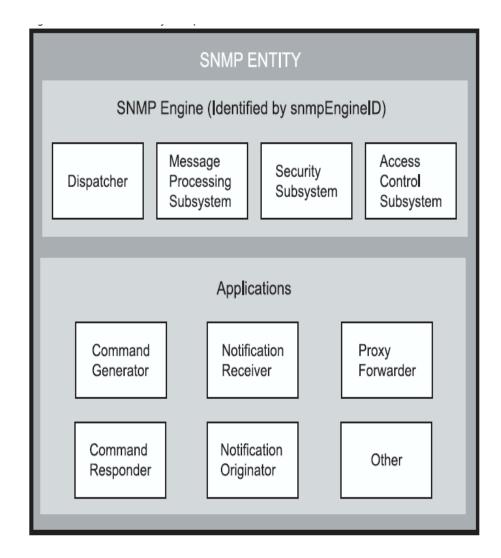
Initial network SNMPv1 Protocol Operations

SNMP Versions

- Versions: SNMP version 1 (SNMPv1), SNMP version 2c (SNMPv2c) and SNMP Version 3 (SNMPv3).
- The three versions operate similarly.
- Security has been a big concern with SNMPv1 and SNMPv2. an unauthorized user could execute network management functions. This had led many operations to have read-only capability.
- SNMPv3 provides significant enhancements to address the security weaknesses existing in the earlier versions.
- This is achieved by implementing two new major features:
 - Authentication by using password hashing and time stamping.
 - confidentiality by using message encryption

SNMP (1-2) message format

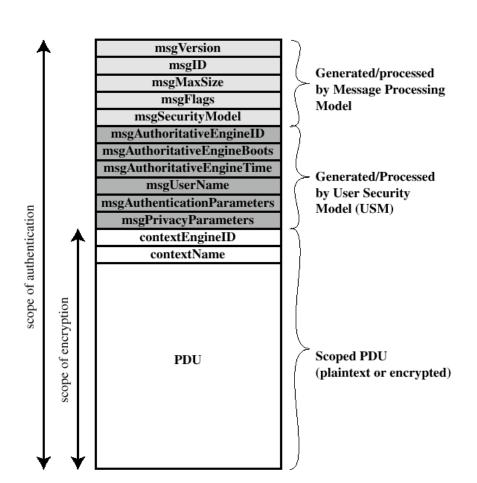
- Version :
 - $-0 \rightarrow SNMPv1$
 - $-1 \rightarrow SMNPv2$
- <u>Community</u>: The name of an SNMP community, for authentication purposes.
- SNMP PDU : An SNMP Protocol Data Unit (PDU). i.e. operation
 get, set..


Version Community SNMP PDU

SNMP Communities (Version v1 and v2c)

- A community is a relationship between an NMS and an agent.
 The community name is used like a password for a trivial authentication scheme.
- Both SNMPv1 and SNMPv2c provide security based on the community name only.
- The concept of communities does not exist for SNMPv3, which instead provides for a far more secure communications method using *entities*, *users* and *groups*.

SNMPv3 Entities


- Entities comprise one of the basic components of the SNMPv3 enhanced architecture.
- They define the functionality and internal structure of the SNMP managers and agents.
- SNMPv3 defines two entity types
- 1. a manager and
- 2. an agent.
- Both entity types contain two basic components:
- 1. an *SNMP engine*
- 2. and a set of applications.

SNMP Engine

- The engine provides the basic services to support the agents component applications such as
- 1. Message transmission and reception,
- 2. authentication and encryption
- 3. and access control to its (MIB).

SNMP v3 message format

msgAuthoritativeEngineID	The ID of the authoritative engine that relates to a particular message, i.e. the source engine ID for Traps, Responses and Reports, and the destination engine for Gets, GetNexts, Sets, and Informs.
msgAuthoritativeEngineBoots	A value that represents the number of times the authoritative engine has rebooted since its installation. Its value has the range 1 to 2 ³¹ -1.
msgAuthoritativeEngineTime	The number of seconds since the authoritative engine snmpEngineBoots counter was last incremented.
msgUserName	The name of the user (principal) on whose behalf the message is being exchanged.
msgAuthenticationParameters	If the message has been authenticated, this field contains a serialized OCTET STRING representing the first 12 octets of the HMAC-MD5-96 output done over the whole message.
msgPrivacyParameters	For encrypted data, this field contains the "salt" used to create the DES encryption Initialisation Vector (IV).
ContextEngineID	Within a particular administrative domain, this field uniquely identifies an SNMP entity that may realize an instance of a context with a particular contextName.
ContextName	A unique name given to a context within a particular

References

- Book "AR400 Series Router Software Reference" chapter "AR400 Series Router Software Reference".
- White paper from Asante.com